Question			Marking details	Marks Available
1	(a)	(i)	0.04[0 m]	1
		(ii)	$\begin{aligned} & T=0.20 \mathrm{~s} \text { [or by impl.] (1) } \\ & f=5.0(1) \mathrm{Hz}(1)(\text { e.c.f. on } T) \end{aligned}$	3
	(b)		If peak arriving at 0.050 s at \mathbf{B} is the peak that passed \mathbf{A} at 0.00 s [or equiv] (1), $v=\frac{0.30 \mathrm{~m}}{0.050 \mathrm{~s}}$ [free-standing](1) [Accept: B could be $\lambda / 4$ from \mathbf{A}, so $\lambda=1.2 \mathrm{~m}$ (1); $\left.v=f \lambda=5.0 \times 1.2 \mathrm{~m} \mathrm{~s}^{-1}(1) .\right]$	2
	(c)	(i)	Distance [along the direction of wave propagation] between two [consecutive] point (1) oscillating in phase (1) ["Distance between two peaks / troughs $\rightarrow 1$]	2
		(ii)	$\lambda=1.2 \mathrm{~m}($ e.c.f. on $f)$	1
				[9]

Question			Marking details	Marks Available
2	(a)	(i)	Wavefronts [or waves] from each slit spread out (1) [accept: waves diffract at each slit]and overlap (1) [or superpose or interfere].	2
		(ii)	I. Sources which emit waves, which are at the same point in their cycle at the same time [accept: "emit peaks at the same time"] II. A maximum on central axis or microwave source central w.r.t. S_{1} and S_{2}.	1 1
		(iii)	Correct insertion of values into $\lambda=\frac{a y}{D}$ (1) [or by implication] $\lambda=0.012 \mathrm{~m}$ (1)	2
		(iv)	I. Constructive interference at \mathbf{P} (1) [accept: waves reinforce] So waves are in phase (1) [Accept: phase difference $=2 \pi n$ etc]	2
			II. $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=n \lambda[$ for $n=0, \pm 1, \pm 2 \ldots$] (1) [$n=0$ for central maximum, $n=1$ for next one out from centre], $n=2$ at P . (1) So $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=0.024 \mathrm{~m}$ (1) [Geometric method based upon Pythagoras $\checkmark \checkmark \checkmark$ if correct]	3
	(b)		Interpose a grille of parallel metal rods and rotate. (1) The signal strength varies. (1) [Accept rotation of the sensor / ærial]	2
	(c)		Any $2 \times(1)$ of: - the radiation penetrates the potato \checkmark - absorbed within the potato, heating interior \checkmark - waves transfer energy [or equiv] - water content heated / water molecules made to vibrate more \checkmark	2
				[15]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks \\
\hline 3 \& \begin{tabular}{l}
(a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Some enters the cladding (1) \\
\(\ldots\)... and is lost (1) \\
Some is reflected but lost on subsequent reflections (1). \\
Paths at different angles to the axis are of different lengths (1). Data travelling on different paths arrive different times [or by clear implic.](1) so data is muddled / smeared out / data pulses overlap (1)
\end{tabular} \& \begin{tabular}{l}
1 \\
3 \\
3 \\
[12]
\end{tabular} \\
\hline 4. \& (a) \& (i)
(ii)
(i)
(ii)
(iii)
(iv) \& \begin{tabular}{l}
Photons hit the caesium surface. (1) \\
Electrons knocked out (1) \\
\(\left.\begin{array}{ll}\text { - } \& \text { Electrons cross vacuum to collecting electrode } \checkmark \\ \text { - } \& \text { returned to the caesium via cell and meter } \checkmark \\ \text { - } \& \text { constituting an electric current } \checkmark \\ \text { - } \& \text { aided by [p.d. of] cell } \checkmark\end{array}\right\}\) any \(1 \times\) \\
Larger current (1) because more photons arrive [per second] (1) \\

\[
\begin{aligned}
E_{\mathrm{k} \max } \& =6.6 \times 10^{-34} \times 8.6 \times 10^{14}-3.1 \times 10^{-19} \mathrm{~J}(1) \\
\& =2.6 \times 10^{-19} \mathrm{~J}(1)
\end{aligned}
\]
\[
E_{\mathrm{k}}=\frac{1}{2} m v^{2} \underline{\text { with }} m=9.1 \times 10^{-31} \mathrm{~kg}(1)
\] \\
Convincing substitution of \(v=7.5 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}\) to obtain \(E_{\mathrm{k}}=2.6 \times 10^{-19} \mathrm{~J}\) or vice versa (1) \\
Intensity doesn't affect individual photon energies [or equiv.]
\end{tabular} \& 3
2

2
2
2

2
1
$[12]$ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available \\
\hline 5 \& (a)

(b) \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii) \\
(iv) \\
(i) \\
(ii) \\
(iii)

 \&

$$
\begin{aligned}
& \Delta E=\frac{h c}{\lambda}\left[\text { or } \Delta E=h f \text { and } f=\frac{c}{\lambda}\right] \text { [or by impl.] (1) } \\
& \left.\Delta E=1.9 \times 10^{-19} \mathrm{~J} \text { [or by impl. }\right](1) \\
& \lambda=1.0 \times 10^{-6} \mathrm{~m}(1)((\text { unit }))
\end{aligned}
$$ \\

infrared \\
[Incident] photon causes emission of a photon (1) $+2 \times(1)$ of: \\

- Incident photon energy needs to be $E_{\mathrm{A}}-E_{\mathrm{B}}$ [or equiv.] \checkmark \\
- Emitted photon has same energy (or λ or f) as incident photon. \checkmark \\
- Emitted photon in phase with incident photon. \\
Two photons where there was one before [and the process repeats] \\
More electrons in level A than in level B. \\
If more electrons in B than A , absorption of photons is more likely than stimulated emission. \\
B almost empty [because electrons 'fall' from B to ground state] (1) So not many electrons needed in A to cause population inversion. (1)

 \&

3 \\
1 \\
3 \\
1 \\
1 \\
1 \\
2 \\
[12]
\end{tabular} \\

\hline 6. \& (a)
(b)

(c)

(d) \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii)

 \&

Weak (1) because neutrinos only feel the weak force [as well as gravity] (1) \\
[Or because the weak force alone can cause a change of quark type]. \\
Ar has 1 more proton than Cl , but electron also appears [so net charge is conserved]. \\
[Or Ar appears as +ion (and picks up an electron)] \\
v_{e} on left is a lepton [or has a lepton number of 1]; electron on right is a lepton [or] \\
(i) 20 \\
(ii) 19 [both answers correct] \\
udd \\
In version at top, neutron is lost and proton is gained. (1) \\
$\left[\right.$ or $n+v_{\mathrm{e}} \rightarrow \mathrm{p}+\mathrm{e}^{-}$] \\
We can regard this as a neutron losing ad [quark] and gaining a u [quark] (1)

 \&

2 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
2 \\
\hline 8$]$
\end{tabular} \\

\hline
\end{tabular}

