PH2

Question			Marking details	Marks Available
1	(a)	(i)	0.04[0 m]	1
		(ii)	T = 0.20 s [or by impl.] (1) f = 5.0 (1) Hz (1) (e.c.f. on T)	3
	(b)		If peak arriving at 0.050 s at B is the peak that passed A at 0.00 s [or equiv] (1), $v = \frac{0.30 \text{m}}{0.050 \text{s}}$ [free-standing](1)	
			[Accept: B could be $\lambda/4$ from A , so $\lambda = 1.2$ m (1); $v = f\lambda = 5.0 \times 1.2$ m s ⁻¹ (1).]	2
	(c)	(i)	Distance [along the direction of wave propagation] between two [consecutive] point (1) oscillating in phase (1)	
			["Distance between two peaks / troughs \rightarrow 1]	2
		(ii)	$\lambda = 1.2 \text{ m (e.c.f. on } f)$	1
				[9]

Question			Marking details	Marks Available
2	(a)	(i)	Wavefronts [or waves] from each slit spread out (1) [accept: waves diffract at each slit]and overlap (1) [or superpose or interfere].	2
		(ii)	I. Sources which emit waves, which are at the same point in their cycle at the same time [accept: "emit peaks at the same time"]II. A maximum on central axis or microwave source central w.r.t.	1
			S_1 and S_2 .	1
		(iii)	Correct insertion of values into $\lambda = \frac{ay}{D}$ (1) [or by implication] $\lambda = 0.012 \text{ m}$ (1)	2
			$\lambda = 0.012 \text{ m} (1)$	2
		(iv)	I. Constructive interference at P (1) [accept: waves reinforce] So waves are in phase (1) [Accept: phase difference = $2\pi n$ etc]	2
			II. $S_1P - S_2P = n\lambda$ [for $n = 0, \pm 1, \pm 2$] (1) [$n = 0$ for central maximum, $n = 1$ for next one out from centre], $n = 2$ at P. (1)	
			So $S_1P - S_2P = 0.024$ m (1) [Geometric method based upon Pythagoras $\checkmark\checkmark\checkmark$ if correct]	3
	<i>(b)</i>		Interpose a grille of parallel metal rods and rotate. (1)	
			The signal strength varies. (1) [Accept rotation of the sensor / ærial]	2
	(c)		Any 2 × (1) of: • the radiation penetrates the potato ✓ • absorbed within the potato, heating interior ✓ • waves transfer energy [or equiv] ✓	
			 waves transfer energy [of equiv] * water content heated / water molecules made to vibrate more ✓ 	2
				[15]

Question			Marking details	Marks Available
3	(a)		C Correctly drawn ray (1) c shown correctly (1)	2
	<i>(b)</i>		1.520 sin $\theta_A = 1.550$ sin $\theta_B (1)$ [or by impl.] $\theta_A = 90^\circ$, $\theta_B = c$ (1) [or by impl.] $c = 79^\circ$ (1)	3
	(c)	(i)	11 ° [± 1°] e.c.f.	1
		(ii)	Some enters the cladding (1) and is lost (1) Some is reflected but lost on subsequent reflections (1).	3
	(d)		Paths at different angles to the axis are of different lengths (1). Data travelling on different paths arrive different times [or by clear implic.](1) so data is muddled / smeared out / data pulses overlap (1)	3 [12]
4.	(a)	(i) (ii) (ii)	Photons hit the caesium surface. (1) Electrons knocked out (1) • Electrons cross vacuum to collecting electrode • returned to the caesium via cell and meter • constituting an electric current • aided by [p.d. of] cell ✓ Larger current (1) because more photons arrive [per second] (1)	3 2
	(b)	(1)	 Power supply polarity needs reversing ✓ Voltage needs to be variable ✓ voltmeter needed ✓ 	2
		(ii)	$E_{k \text{ max}} = 6.6 \times 10^{-34} \times 8.6 \times 10^{14} - 3.1 \times 10^{-19} \text{ J (1)}$ = 2.6 × 10 ⁻¹⁹ J (1)	2
		(iii)	$E_k = \frac{1}{2}mv^2 \text{ with } m = 9.1 \times 10^{-31} \text{ kg (1)}$ Convincing substitution of $v = 7.5 \times 10^5 \text{ m s}^{-1}$ to obtain $E_k = 2.6 \times 10^{-19} \text{ J or vice versa (1)}$	2
		(iv)	Intensity doesn't affect individual photon energies [or equiv.]	1 [12]

Question			Marking details	Marks Available
5	(a)	(i)	$\Delta E = \frac{hc}{\lambda} \text{ [or } \Delta E = hf \text{ and } f = \frac{c}{\lambda} \text{] [or by impl.] (1)}$ $\Delta E = 1.9 \times 10^{-19} \text{ J [or by impl.] (1)}$ $\lambda = 1.0 \times 10^{-6} \text{ m (1) ((unit))}$	3
		(ii)	infrared	1
		(iii)	 [Incident] photon causes emission of a photon (1) + 2 × (1) of: Incident photon energy needs to be E_A − E_B [or equiv.] ✓ 	
			 Emitted photon has same energy (or λ or f) as incident photon. ✓ Emitted photon in phase with incident photon. ✓ 	3
		(iv)	Two photons where there was one before [and the process repeats]	1
	(b)	(i)	More electrons in level A than in level B.	1
		(ii)	If more electrons in B than A, absorption of photons is more likely than stimulated emission.	1
		(iii)	B almost empty [because electrons 'fall' from B to ground state] (1) So not many electrons needed in A to cause population inversion. (1)	2
				[12]
6.	(a)		Weak (1) because neutrinos only feel the weak force [as well as gravity] (1) [Or because the weak force alone can cause a change of quark type].	2
	(b)	(i)	Ar has 1 more proton than Cl, but electron also appears [so net charge is conserved]. [Or Ar appears as + ion (and picks up an electron)]	1
		(ii)	v_e on left is a lepton [or has a lepton number of 1]; electron on right is a lepton [or]	1
	(c)		(i) 20 (ii) 19 [both answers correct]	1
	(d)	(i)	udd	1
		(ii)	In version at top, neutron is lost and proton is gained. (1) $[\mathbf{or} \ n + v_e \rightarrow p + e^-]$	
			We can regard this as a neutron losing a d [quark] and gaining a u [quark] (1)	2
				[8]

Question			Marking details	Marks Available
7	(a)		[A body with a surface that] absorbs all radiation[accept: 'light'] falling upon it.	1
	(b)	(i)	Area of sphere of radius $8.1 \times 10^{16} \text{ m} = 4\pi \times (8.1 \times 10^{16})^2$ (1) $[= 8.2 \times 10^{34} \text{ m}^2]$	_
			Power reaching surface = $1.2 \times 10^{-7} \times 4\pi \times (8.1 \times 10^{16})^2$ W (1) [Or reverse argument from power to intensity, if clear] e.c.f on numerical factors in area [not for use of $2\pi r$]	2
		(ii)	Absorption / scattering [of radiation by interstellar dust / gas]	1
		(iii)	$9.9 \times 10^{27} = 5.67 \times 10^{-8} A \times 9900^4$ [or by impl.] (1) (Data subst. at any stage) Transposition at any stage (1)	
			$r = 1.2 \times 10^9 \text{ m (1) [e.c.f. on } A, \text{ if } \pi r^2 \text{ used]}$	3
		(iv)	 Curve of correct general shape sketched which is lower throughout (1) has a maximum at longer λ (1) 	2
	(c)		Atoms / ion / [accept molecules]of a star's atmosphere (1) [or interstellar space or Earth's atmosphere] absorb specific wavelengths	
			(1) [from the continuous spectrum] promoting electrons to higher energy level (1) [or re-emitting in all directions]	3
				[12]